General Physics - Physics 101 Test #2 Angular Displacement $\Delta \theta = \theta - \theta_o$ Arc Length $s = r\Delta \theta = r\theta$ (typically $\theta_o = 0$) Average Angular Speed $\omega_{avg} = \frac{\Delta \theta}{\Delta t}$ Instantaneous Angular Speed $\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$

Period/Frequency

 $f = \frac{1}{T}$

Angular speed in terms of Period and Frequency

$$\omega = \frac{2\pi}{T} = 2\pi f$$

Tangential speed

 $V_t = r\omega$

Kinetic Friction

 $f_k = \mu_k n$

Rolling

 $f_r = \mu_r n$

Tangential speed for uniform circular motion $v = \frac{2\pi r}{T}$ magnitude of tangential acceleration $a_t = r\alpha$

Angular Kinematic Equations

$$\theta_f = \theta_i + \omega_i \Delta t + \frac{1}{2} \alpha (\Delta t)^2 \qquad \omega_f = \omega_i + \alpha (\Delta t) \qquad \omega_f^2 = \omega_i^2 + 2\alpha \Delta \theta$$

Centripetal (radial) Acceleration

Total Acceleration for circular motion

$$a = \sqrt{a_r^2 + a_t^2}$$

2017 Pearson Education. In

 $a_{c} = \frac{v^{2}}{v} = \frac{(r\omega)^{2}}{v} = r\omega^{2}$

Newton's 2nd Law: Weight/Force of gravity $\vec{a} = \frac{\vec{F}_{net}}{m}$ $\vec{F}_{net} = m \cdot \vec{a}$ $F_g = mg$ Net force $\vec{F}_{net} = \sum \vec{F}_i = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \vec{F}_4 \dots$ $\vec{F}_{net,x} = \sum \vec{F}_{i,x}$ and $\vec{F}_{net,y} = \sum \vec{F}_{i,y}$ Static Friction Newton III law pair $f_{s \max} = \mu_s n$ $\vec{F}_{A \text{ on } B} = -\vec{F}_B \text{ on } A$

Gravitational Attraction

 $F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = \frac{Gm_1m_2}{r^2}$

 $G = 6.67 \text{ x } 10^{-11} \text{ Nm}^2 / \text{kg}^2$

$a = \sqrt{a_r}$	$+ a_t$	

Average Angular Acceleration

 $\alpha_{avg} = \frac{\Delta\omega}{\Delta t}$

 TABLE 6.1
 Coefficients of friction

	Static	Kinetic	Rolling
Materials	$\boldsymbol{\mu}_{\mathrm{s}}$	$oldsymbol{\mu}_{ ext{k}}$	$\mu_{ m r}$
Rubber on dry concrete	1.00	0.80	0.02
Rubber on wet concrete	0.30	0.25	0.02
Steel on steel (dry)	0.80	0.60	0.002
Steel on steel (lubricated)	0.10	0.05	
Wood on wood	1 0.50	0.20	
Wood on snow	v 0.12	0.06	
Ice on ice	0.10	0.03	