General Physics - Physics 101 Test #2 – Friday 10/16/20

Angular Displacement

$$\Delta\theta = \theta - \theta_0$$

Arc Length

$$s = r\Delta\theta = r\theta \ (typically \ \theta_o = 0)$$

Average Angular Speed

$$\omega_{avg} = \frac{\Delta\theta}{\Delta t}$$

Instantaneous Angular Speed

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

Angular speed in terms of Period and Frequency

$$\omega = \frac{2\pi}{T} = 2\pi f$$

Period/Frequency

$$f = \frac{1}{T}$$

Average Angular Acceleration

$$\alpha_{avg} = \frac{\Delta \omega}{\Delta t}$$

Tangential speed

Tangential speed for uniform circular motion

$$v_t = r\omega$$

$$v = \frac{2\pi r}{T}$$

magnitude of tangential acceleration

$$a_{t} = r\alpha$$

Angular Kinematic Equations

$$\theta_f = \theta_i + \omega_i \Delta t + \frac{1}{2} \alpha (\Delta t)^2$$

$$\omega_f = \omega_i + \alpha(\Delta t)$$

$$\omega_f = \omega_i + \alpha(\Delta t)$$
 $\omega_f^2 = \omega_i^2 + 2\alpha\Delta\theta$

Centripetal (radial) Acceleration

$$a_{\rm c} = \frac{v^2}{r} = \frac{(r\omega)^2}{r} = r\omega^2$$

Total Acceleration for circular motion

$$a = \sqrt{a_r^2 + a_t^2}$$

Weight/Force of gravity Newton's 2nd Law:

$$\vec{a} = \frac{\vec{F}_{net}}{m} \qquad \vec{F}_{net} = m \cdot \vec{a} \qquad F_g = mg$$
Net force $\vec{F}_{net} = \sum \vec{F}_i = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \vec{F}_4 \dots$

$$\vec{F}_{net,x} = \sum \vec{F}_{i,x} \quad and \quad \vec{F}_{net,y} = \sum \vec{F}_{i,y}$$

Static Friction Newton III law pair
$$f_{s \text{ max}} = \mu_s n$$
 $\vec{F}_{A \text{ on } B} = -\vec{F}_{B \text{ on } A}$ Kinetic Friction Gravitational Attraction

$$f_k = \mu_k n$$
Rolling
 $f_r = \mu_r n$
 $F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = \frac{Gm_1 m_2}{r^2}$
 $G = 6.67 \times 10^{-11} \text{ Nm}^2 / \text{kg}^2$

Materials	Static μ_s	Kinetic μ_k	Rolling $oldsymbol{\mu}_{ ext{r}}$
Rubber on wet concrete	0.30	0.25	0.02
Steel on steel (dry)	0.80	0.60	0.002
Steel on steel (lubricated)	0.10	0.05	
Wood on wood	0.50	0.20	
Wood on snow	0.12	0.06	
Ice on ice	0.10	0.03	